
数字单元板双异质结(DH)是窄带隙有源区(GaAs)材料被夹在宽带隙的材料( GaAlAs)之间构双异质结构的导带上出现了一个向上的“台阶”,这个“台阶”阻止了电子向P区扩散;同时,在价带上出现了一个向下的“台阶”,这个“台阶”对空穴形成一个位垒,从而阻止了价带中的空穴向左侧逸出,亦即限制了空穴从有源区 P-GaAs向N区扩散。这样,双异质结激光器就在有源区的两侧分别限制了电子从右侧,空穴从左侧逸出。此外,由于所加异质材料 N-GaAlAs的折射率也低于有源区材料 P-GaAs的折射率,故按照前面的分析, N-GaAIAs与 P-GaAs的边界也有导波作用,这个作用从左侧限制了光波的射出。从而,双异质结激光器的有源区两侧边界都对光波进行了限制综上两个方面所述,由于双异质结激光器在有源区两侧,既限制了载流子,又限制了光波,故它的光强分布基本被约束在有源区,而且阈值电流大大降低,实现了预期的目的。发光二极管又称LED,它的使用已经有四十多年的历史了,它们被广泛应用在各类电子设备中,也是光纤通信中经常使用的光源。
数字单元板细节图片
数字单元板产品介绍
目前构成光纤的材料是SiO2,大多数光纤通常被拉成125μm的细丝。从理论上推算,光纤的抗张强度可达20GPa。但实际上由于光纤内部的气泡、微粒、杂质等影响,抗张强度只有0.1~0.2GPa。但是光纤加上涂覆层后抗张强度极大增强。通常情况下,光纤的特性受温度影响不大,但是在温度很低时,损耗随温度降低而增加,尤其是在温度非常低时,损耗急剧增加,所以高寒地区工作的光缆应注意到这个产生这种现象的原因是光纤的热胀冷缩。构成光纤的石英材料(SO2)的热膨胀系数很小,在温度降低时几乎不收缩。而光纤在成缆过程中必须经涂覆和加上一些其他构件,涂覆材料及其他构件的膨胀系数较大,当温度降低时,收缩比较严重,所以当温度变化时,材料的膨胀系数不同,将使光纤产生微弯,尤其表现在低温区。
数字单元板特点
目前ITUT建议定义了5种单模光纤G.652、G.653、G.654、GG.652和G.655是目前光纤通信工程中X广泛使用的单模光纤(1)G.652光纤56,其中G.652光纤的特点是:其设计的X佳工作波长在1310m附近,也可以用于1550gm波段。G2光纤细分为4个子类G.652光纤的性能特点的实质,X标准将G.652光纤分为两大类:标准单模光纤(G.652A652A、G.652B、C52C和G652D光纤。按照和G.652B)和波长扩展单模光纤(G.652C、G.652D)标准单模光纤(G.652A、G.652B)又称为常规单模光纤,于1983年开始商用。标准单模光纤的性能特点是:①在1310mm波长的色散为零;②在波长为1550nm附近衰减系数X小约为0.22dB/km,但在1550m附近其具有X大色散系数为18m20ps/mkm,传输距离被限制在70~80km之间;③这种光纤工作波长既可选在1310mm波长区域,又可选在1550m波长区域,它的X佳工作波长在1310mm区域。
数字单元板结构
这种光纤常称为标准单模光纤( Standard Single Mode Fiber,SSMF)或称为常规单模光纤。它是当前X为广泛使用的光纤。否波长扩展单模光纤(G.652C、G,652D)。随着光波分复用技术的发展,在城域网方面,人们广泛采用的解决方案是选用数十至上百个复用波长的高密集波分复用技术。众所周知,制约标准单模光纤G.652工作波长区窄的原因是1385mm附近高的水吸收峰,在1385nm附近,标准单模G.652光纤中只要含有几个ppm的氢氧根离子就会产生几个分贝的衰减。为此,光纤制造商通过改进生产工艺,使G.652光纤在1385nm附近的水吸收峰基本消失,从而研究出了可以在1260~1670mm整个波长范围工作的新型G.652光纤。由于这种新型G.652光纤的工作波长比常规单模光纤工作波长要宽得多,所以人们将其称为波长扩展单模光纤(全谱光纤),即G.652C光纤、G.652D光纤。波长扩展单模光纤完全能够满足城域网粗波分复用技术发展的需要。
数字单元板作用
光纤通信系统所用的光源是半导体材料,因此本章从半导体的能带理论开始分析。原子是由原子核和核外绕固定轨道旋转的电子组成,因为每个轨道对应着一个固定的值,所以这些原子所拥有的能量值是离散的。半导体是由紧密排列的原子组成的一种固态物质,邻近原子中的电子被原子间的引力结合,将发生不同程度的交叠,原子间的影响将表现出来。原来围绕一个原子运动的电子,现在可能转移到邻近原子的同一轨道上去,晶体中的电子不再属于个别原子所有,它们一方面围绕每个原子运动,同时又要在原子之间作共有化运动,半导体的主要特征是它们的内部原子有规则地、周期性地排列着。作共有化运动的电子受到周期性排列着的原子的作用,它们的势能具有晶格的周期性。因此,晶体的能谱在原子能X的基础上按共有化运动的不同而分裂成若干组。
虽然在半导体中能X还是离散的但是每组中能X彼此靠得很近,组成有一定宽度的带。人们把这些组想象为很宽的、连续的能量区,称为能带,如图4-1-2所示由于内层电子态之间的交叠小,原子间的影响弱,分成的能带比较窄;而外层电子态之间的交叠大,能带分裂的比较宽,对其他原子有较大影响,所以物质的性质主要由X外层电子决定。锗、硅、镓、砷、铟等一些重要的半导体材料,都是典型的共价晶体。在共价晶体中,每个原子X外层的电子和邻近原子形成共价键,整个晶体就是通过这些共价键把原子联系起来在半导体物理中,通常把这种形成共价键的价电子所占据的能带称为价带价带的能量较低,比价带能量高的能带称为导带。能量处于价带和导带之间的成分不能被电子占据,这个成分称为禁带,它将价带和导带分隔开,当一个受激电子从一个高能带向一个低能导带带跃迁时,发出一个光子。
它的X点在于较小的尺寸和较长的使用寿命。但它也具有发光亮度低,光谱宽等缺陷,故发光二极管(LED)通常使用在低速、短距离光通信系统。发光二极管是非相干光源,是无阈值器件,它的基本工作原理是自发辐射1.LED的结构和工作原理LED通常采用双异质结芯片,把有源层夹在P型和N型限制层中间,如前所述这是因为同质结构的LED存在着两个缺点:激活区太发散,导致装置的效率很低;产生的光束太宽,导致光耦合效率太低。采用双异质结构可以增加光辐射的效率并更好地限制辐射光LED的基本工作原理是光的自发辐射。正向电压V提供的外加能量激发了处光输出于导带的电子和空穴进入耗尽区并且发生复合,促使发光三极管LED产生了能量:N-Al GaL-A与普通二极管以热能的方式释放能量不同,LED将大部分产生的能量以可见光的方式P-GaAs释放出来通常,用内部量子效率来衡量受激电子中产生光子的电子的比例,这样可以对输出的光功率进行定量的描述。光功率P是指每秒发光的能量,它等于光子数目乘以单个光子的能量E2。