2083模具钢真空热处理高压气冷淬火技术
当前真空高压气冷淬火技术发展较快,相继出现了负压高流率气冷、加压气冷、高压气冷、X高压一气冷等新技术,不但大幅度提高了真空气冷淬火能力,且淬火后工件表面光亮度好,变形小,还有高效、节能、无污染等X点。
真空高压气冷淬火的用途是材料的淬火和回火,不锈钢和特殊合金的固溶、时效,离子渗碳和碳氮共渗,以及真空烧结,钎焊后的冷却和淬火。
用高压氮气冷却淬火时、被冷却的负载只能是松散型的,高速钢可淬透至70~100mm,高合金热作模具钢可达25~100mm。
用1000kPa高压氮气冷却淬火时,被冷却负载可以是密集型的,比60
0kPa冷却时负载密度提高约30%~4O%。
用2000kPaX高压氮气或氦气和氮气的混合气冷却淬火时,被冷却负载是密集的并可捆绑在一起。其密度较600kPa氮气冷却时提高80%~150%,可冷却所有的高速钢、高合金钢、热作工模具钢及铬钢和较多的合金油淬钢,如较大尺寸的锰钢。
具有单X冷却室的双室气冷淬火炉的冷却能力X于相同类型的单室炉。200kPa氮气冷却的双室炉的冷却效果和400kPa的单室炉相当。但运行成本、维修成本低。由于我国基础材料工业(石墨、钼材等)和配套元器件(电动机)等水平有待提高。所以在提高600kPa单室高压真空护质量的同时,发展双室加压和高压气冷淬火炉比较符合我国的国情。
真空高压气冷等温淬火
形状复杂的较大工件从高温连续进行快速冷却时容易产生变形甚至裂纹。以往可用盐浴等温淬火解决。在单室真空高压气冷淬火炉中能否进行气冷等温淬火呢?在带有对流加热功能的单室高压气冷淬火炉中对两组φ320mm×120mm两块叠装的碳素结构钢用不同冷却方式淬火后的对化结果。一组是在1020℃加热后,在600kPa压力下连续用高纯氮气冷却(风向是上、下相互交替,40s切换一次)的结果。另一组是对试样表面、心部进行 370℃时的控制冷却。从两组曲线的对比可以看出,心部温度通过500℃的时间(半冷时间)只差约2min。从表面进行控制冷却开始到心部温度到达 370℃附近,需27min。由此可见,在单室真空高压气淬火炉进行等温气冷淬火是可行的。
工艺发展
热处理的发展是伴随着机械制造业的发展而发展,机械制造又对热处理提出了更新更高的要求,模具的热处理又是热处理中技术含量X高的部分。
众所周知,模具热处理就是为了发挥模具材料的潜力,提高模具的使用性能。模具的性能必须满足:高的强度,(包括高温强度,抗冷热疲劳性能)高的硬度(耐磨性能)和高的韧性,并且还要求有良好的机械加工性、(包括良好的抛光性)可焊接性及抗腐蚀性等等。
对模具寿命影响X大的是模具的设计(包括了正确的选择材料)模具的材料,模具的热处理,模具的使用和维护等。如果模具的设计合理,材料X质,那么热处理的好坏直接决定了模具的使用寿命。目前国内外都在设法采用更X的热处理手段来提高模具的性能延长模具的使用寿命。而真空热处理则是模具热处理中较X的方式之一。所以从模具热处理来看,热处理加工设备的状态、热处理的工艺、生产过程的控制显得尤为重要。而设备的X性是保证X工艺实现的前提。真空高压气淬炉是实现真空热处理X为理想的设备。真空炉具有不脱碳,不氧化的效果,具有温度均匀,加热和冷却速度可控,可以实现不同的工艺过程,真空炉由于没有污染,是国际上公认的“绿色热处理”。现在国际上已有2-20bar的真空高压气淬炉,可以完全满足模具的真空热处理的要求。
模具热处理过程中,所采用的工艺参数对模具性能也有着至关重要的影响:它包括了加热温度、加热速度、保温时间、冷却方式、冷却速度等。正确的热处理工艺参数可以保证模具获得X佳性能,反之,将产生不良甚至严重后果。实践表明,正确的热处理工艺可以获得X良的组织,X良的组织形态才能保证X良的机械性能。合适的工艺方法可以X的控制模具热处理时的变形和开裂。从实践中发现:模具在加热和冷却过程中,模具表面温度和心部温度的差异(加热的不均匀性和冷却的不均匀性)是造成模具变形的主要因素。(真空炉具有控制加热速度和冷却速度的能力)。不同的工艺方法可以使模具满足不同的使用条件和不同的性能要求。