
开始分解的时间和结束转变的时间提升前,也就是说,过冷奥氏体的稳定性下降。这是感应加热过冷奥氏体连续冷却转变的好处。快速加热提升钢的悴火临界冷却速度悴火临界冷却速度是指在此冷却速度下猝火时,过冷奥氏体不会发生分解,冷却后可以得到完全的马氏体(含有少量残余奥氏体)的小冷却速度。猝火临界冷却速度代表钢接受悴火的能力大小,是滓火工艺的不错的参数。钢的猝火临界冷却速度随化学成分而变化,同时也随奥氏体的稳定性而变化。在快速加热条件下,奥氏体的稳定性随加热速度的增大而下降。因此,悴火临界冷却速度随加热速度的增大而增加。为了获得相同的悴火效果,感应加热猝火需要比普通加热悴火更快的冷却速度。快速加热悴火马氏体含碳量低于钢的平均含碳扯这是快速加热过冷奥氏体连续冷却转变的好处之一。
传统加热悴火马氏体含碳桩与钢的平均含碳量保持一致。这个好处表明,快速加热猝火马氏体含碳量比传统加热悴火马氏体含碳量低。产生这种现象的原因与奥氏体成分的不均匀性有关。快速加热条件下形成的奥氏体成分不均匀,与基体成分有差异。碳元素在奥氏体中的含量,低于钢的平均含碳量。滓火时,奥氏体以无扩散方式转化为马氏体,碳原子全部进人马氏体内,基体钢中的碳元素以碳化物形式保留下来。当转变结束后,马氏体内含碳措仍然低于钢的平均含量。而传统加热形成的奥氏体中含碳量与钢的平均含量一致,奥氏体成分是均匀的。猝火时,奥氏体内的碳原子无扩散的全部进人马氏体,并与钢的含碳量保持一致。87型雨水斗感应加热调质处理(猝火与回火)是碳钢和低合金钢材不错的的快速热处理工艺。
变处的应力集中,对疲劳很不利。在峰应力处形成双向或三向同号拉应力场。在反复应力作用下,X先在应力峰出现微观裂纹,然后逐渐开展形成宏观裂缝。在反复荷载的继续作用下,裂缝不断扩展,X截面面积相应减小,应力集中现象越来越严重,这就促使裂缝的继续扩展。同时,由于是双向或三向同号拉应力场,材料的塑性变形受到限制。因此,当反复循环荷载达到一定的循环次数时,裂缝的扩展使截面削弱过多经受不住外力作用,就会发生脆性断裂,出现钢材的疲劳破坏。如果钢材中存在着残余应力,在交变荷载作用下将加剧疲劳破坏的倾向。.冶炼过程的影响偏析。偏析是指金属结晶后化学成分分布不均匀,易造成钢材塑性、韧度、冷弯性能及焊接性能变差。如沸腾钢在冶炼过程中脱氧脱氮不彻底。